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It is a grand challenge to visualize and assess in vivo neovascularization in a three-dimensional (3D) scaffold
noninvasively, together with high spatial resolution and deep penetration depth. Here we used multiscale
photoacoustic microscopy (PAM), including acoustic-resolution PAM (AR-PAM) and optical-resolution PAM
(OR-PAM), to chronically monitor neovascularization in an inverse opal scaffold implanted in a mouse model up
to 6 weeks by taking advantage of the optical absorption contrast intrinsic to hemoglobin molecules in red blood
cells. By combining with optical coherence tomography (OCT) based on optical scattering contrast, we also
demonstrated the capability to simultaneously image and analyze the vasculature and the scaffold in the same
mouse. The hybrid system containing OR-PAM and OCT offered a fine lateral resolution of ~5pum and a
penetration depth of ~1mm into the scaffold/tissue construct. AR-PAM further extended the penetration depth
up to ~3 mm at a lateral resolution of ~45 pm. By quantifying the 3D PAM data, we further examined the effect
of pore size (200 vs. 80 pm) of a scaffold on neovascularization. The data collected from PAM were consistent

with those obtained from traditional invasive, labor-intensive histologic analyses.

Introduction

ISSUE ENGINEERING INTEGRATES elements of scaffold

design, cellular control, and molecular signaling to en-
hance the healing or replacement of an injured tissue.'™ In
addition to its function as a physical support, a three-
dimensional (3D) porous scaffold also provides a controlla-
ble microenvironment for angiogenesis, a critical step in the
process of wound healing or tissue repairing.*” In spite
of many years of research, it remains a grand challenge to
noninvasively monitor and assess the development of neo-
vasculature in vivo with high spatial resolution, deep pene-
tration, and high contrast.” In assessing neovascularization in
implanted scaffolds, the most widely used imaging modali-
ties include X-ray microcomputed tomography (micro-CT)
and laser scanning optical microscopies (LSMs, e.g., confocal
and multiphoton microscopy).>” While micro-CT can pene-
trate a tissue/scaffold construct up to several centimeters

thick, it suffers from poor contrast for soft tissues and fluid-
perfused scaffolds unless exogenous contrast agents are ad-
ministered. LSMs have limited tissue penetration (up to
several hundred micrometers deep only), especially in the
presence of strong light scattering by blood,'’ and they
usually require the use of a fluorescent chromophore as the
probe as well. Thus, new imaging techniques with high
resolution, deep penetration, and high label-free contrast are
needed to allow for noninvasive monitoring of the process of
neovascularization within 3D scaffolds.

Photoacoustic microscopy (PAM) is a newly developed
modality that acquires images in a noninvasive manner. It
relies on photoacoustic signals generated from an object that
absorbs either pulsed or intensity-modulated laser irradia-
tion. The nonionizing irradiation used for PAM imaging is
safer to tissues than the ionizing X-rays used in micro-CT.""
Additionally, hemoglobin, the primary carrier of oxygen in
blood, exhibits a strong intrinsic optical absorption contrast
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for label-free PAM with high sensitivity.'> This unique fea-
ture allows one to map the vascular network and avoid
possible alternations to the hemodynamics caused by exog-
enous angiographic agents. We have recently applied PAM
to tissue engineering in an effort to resolve cell distribution in
a porous polymeric scaffold in vitro.">'* In this work, we
further extended the capability of PAM to demonstrate its
capability in noninvasive imaging and monitoring of the
neovascularization process in a porous scaffold in vivo for
the same mouse up to 6 weeks postimplantation. When
combined with optical coherence tomography (OCT), which
is based on optical scattering contrast from the scaffold, we
could easily resolve and compare the neovasculature devel-
oped inside the pores of the scaffolds as a function of time. In
addition, we also evaluated the effect of pore size on neo-
vascularization by quantifying the 3D PAM data.

Materials and Methods
Preparation of inverse opal scaffolds

Poly(p, r-lactide-co-glycolide) (PLGA) inverse opal scaf-
folds were fabricated by templating against gelatin lattices,
which were obtained after thermal fusion of cubic closed-
packed gelatin microspheres with uniform sizes. We pro-
duced the microspheres using a simple microfluidic device
according to our previously published protocols’®'® (see
Supplementary Data for more details; Supplementary Data
are available online at www .liebertpub.com/tec).

Animals

PLGA inverse opal scaffolds were cut into a square shape
with dimensions of approximately 3 (width)x3 (length)x
1.5 mm (height) and subcutaneously implanted in the ears of
nude mice (see Supplementary Data for details on surgery
and histology).
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PAM and OCT

Mice with implanted scaffolds were noninvasively moni-
tored for up to 6 weeks using an acoustic-resolution PAM
(AR-PAM) (Supplementary Fig. S1A) and a hybrid system
combining optical-resolution PAM (OR-PAM) and OCT
(Supplementary Fig. S1B). Volumetric data were collected
and processed using custom MATLAB (MathWorks, Natick)
programs (see Supplementary Data for more details).

Statistics

All the results were presented as mean *standard error for
each experimental group. Three mice were monitored for
chronic PAM/OCT imaging, and the other three mice were
sacrificed for histology analyses at each time point. Quanti-
fication was obtained by analyzing at least 10 images ran-
domly chosen within the region of interest from each animal
(in the case of histology), or by volumetric signal processing
in each animal (in the case of PAM imaging).

Results
Inverse opal scaffolds

Figure 1A shows a scanning electron microscope (SEM)
image of a cubic close-packed lattice of gelatin microspheres
after it had gone through thermal treatment to induce necking
between adjacent spheres. This lattice then served as a sacrificial
template to produce a PLGA inverse opal scaffold via an infil-
tration freeze-drying process. Figure 1B shows a typical SEM
image of such an inverse opal scaffold. When viewed from the
top, it is obvious that the inverse opal scaffold had an ordered,
interconnected pore structure, together with a uniform and well-
controlled pore size of about 200 pm. An enlarged view in the
inset clearly shows the uniform windows that connect one pore
with three pores underneath it. Figure 1C shows an SEM image
of the same scaffold at a tilted angle and a lower magnification

FIG. 1. Characterization of
inverse opal scaffolds. SEM images
showing (A) a cubic close-packed
lattice of gelatin microspheres after
thermal annealing, (B) a PLGA
inverse opal scaffold with a pore
size of 200 um, with the inset
showing an enlarged view (scale
bar: 50 um), and (C) the PLGA
scaffold at a tilted angle to show its
3D structure and overall
uniformity. The top surface of the
scaffold is indicated by the dotted
line. (D) A typical optical
micrograph showing an inverse
opal scaffold (marked by a square)
implanted subcutaneously in the
ear of a nude mouse. SEM,
scanning electron microscope;
PLGA, poly(p, L-lactide-co-
glycolide); 3D, three-dimensional.
Color images available online at
www.liebertpub.com/tec
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where the top surface is indicated by the dotted line, revealing
its three-dimensionality and structural uniformity.

OR-PAM and OCT of neovascularization
in inverse opal scaffolds

Supplementary Figure S1A shows a schematic of the dual-
modality system that combines OR-PAM and spectral-
domain OCT."” The OR-PAM subsystem used a diode-pumped
Nd:YVO4 laser, and the photoacoustic signals were detected
using a focused ultrasonic transducer. The OR-PAM sub-
system had a lateral resolution of 5um by using optical fo-
cusing and an axial resolution of 14 um. The OCT subsystem
measures the light backscattered from the object (e.g., the
polymeric scaffold), and was characterized by a lateral res-
olution of 5um and an axial resolution of 5.9 um. Both
OR-PAM and OCT had a penetration depth of ~1mm in
high-scattering soft tissues, such as skin.

PLGA inverse opal scaffolds with a pore size of ~200um in
diameter of ~3x3x1.5mm? in dimensions were implanted
subcutaneously in the ears of nude mice (one scaffold per ear
per mouse, Fig. 1D), and monitored using the dual-modality
OR-PAM/OCT system at an excitation wavelength of 532 nm
up to 6 weeks postimplantation. In this study, the PLGA
polymer itself could not generate sufficiently strong PA sig-
nals to provide adequate contrast, and thus only vasculature
was imaged by the PAM due to the strong optical absorption
of hemoglobin. As shown by the maximum amplitude pro-
jection (MAP) images in Figure 2A-C and the movie in Sup-
plementary Movie S1, the density of blood vessels increased
with time over the 6-week period. Microvasculature down to
the capillary level was well resolved due to the high lateral
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resolution of OR-PAM. OCT signals were also collected si-
multaneously with PAM scanning, which were used to re-
solve the structure of the scaffold/tissue construct. The OCT
signals from the top layer of the ear skin (~150 pm in thick-
ness) were removed from the 3D data.'® As shown by the
MAP images in Figure 2D-F and Supplementary Movie S2,
while the overall structure of the scaffold was largely retained
by week 6, some regions had slightly degraded over the pe-
riod, leading to a local increase in the size of a few pores
(examples are indicated by arrowheads).

Figure 3A-C and Supplementary Movie S3 show coregis-
tered 3D depictions of the vasculature (in red) and the
scaffold/tissue construct (in green). The growth of a neo-
vasculature into the scaffold started before week 4, as revealed
by co-localization of the blood vessels and the pores on the
surface of the scaffold (Fig. 3B, C, marked by arrowheads).
Figure 3D-F show the corresponding coregistered B-scan
(z-direction) images at the positions indicated by the dotted
lines in Figure 3A-C, respectively. Several layers of the pores
close to the surface of the scaffold could be clearly resolved in
the OCT images. Blood vessels were seen to gradually develop
over time from the surrounding tissue into the interior of the
scaffold. Some vessels could reach a depth of more than 1 mm
at week 6 (Fig. 3F). In these images, OCT signals from the skin
were removed to clearly show the surface of the scaffold.'®

AR-PAM of neovascularization
in inverse opal scaffolds

A schematic of the AR-PAM is shown in Supplementary
Figure S1B."? This system used a dye laser pumped by an
Nd:YLF laser, and the photoacoustic wave was detected by a
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FIG. 2. Chronic OR-PAM and OCT images showing the vasculature and scaffold/tissue construct for an inverse opal
scaffold with a pore size of 200 um. (A-C) PAM MAP images showing the development of blood vessels at 2, 4, and 6 weeks
postimplantation, respectively. (D-F) The corresponding OCT MAP images showing the scaffold/tissue construct. MAP
stands for maximum amplitude projection. The signals from the skin layer were removed from all the OCT images to show
the surface of the scaffold more clearly. Arrowheads indicate examples of local increase in pore size over time due to
degradation of the scaffold. PAM, photoacoustic microscopy; OR-PAM, optical-resolution PAM; OCT, optical coherence
tomography. Color images available online at www liebertpub.com/tec
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focused ultrasonic transducer. The optical focal spot size was
2mm in diameter, much larger than that of the OR-PAM
(5 pm). Therefore, the lateral resolution was predominantly
determined by the narrower ultrasonic focus. The AR-PAM
could achieve a lateral resolution of 45 pum, an axial resolu-
tion of 15um, and a penetration depth of ~3mm in soft
tissues. This system was chosen for the following studies,
because it provides deeper penetration than OR-PAM while
maintaining an adequate image resolution.

The same group of mice was also monitored by AR-PAM
at an excitation wavelength of 570nm at 1, 2, 4, and 6 weeks
postimplantation (Fig. 4). At 1 week postimplantation, the
area of the scaffold (indicated by the white dotted square)
could be clearly resolved due to the absence of blood vessels
(Fig. 4A). The scaffold could be better resolved in Figure 4E
after removal of the signals from the skin (~150pum in
thickness) using an algorithm similar to what was used for
the OCT images.'® As shown by Figure 4B-D and Supple-
mentary Movie 54, the neovasculature developed gradually
over time, consistent with the observations by OR-PAM
depicted in Figure 2A-C. These blood vessels not only grew
on top of the implanted scaffold but also penetrated into the
scaffold, as shown by the images in Figure 4F-H, where the
signals from the skin layer have been removed from the 3D
PAM data. In addition, B-scan images (Fig. 4I-L) at the in-
dicated positions (green dotted lines in Fig. 4A-D) show
increase both in the signal intensity and the number of blood
vessels in the central regions, confirming the inward growth
of a neovasculature into the inner pores of the scaffold.

To further demonstrate the capability of our imaging
modality, we implanted inverse opal scaffolds with a pore
size of ~80pum (Supplementary Fig. S2) into the ears of a
new group of mice. The mice were then noninvasively

FIG. 3. Chronic OR-PAM
and OCT coregistered images
showing the development of
neovasculature in the same
scaffold as in Figure 2. (A-C)
Coregistered 3D depictions of
the vasculature (red) and
scaffold/tissue construct
(green) at 2, 4, and 6 weeks
postimplantation,
respectively. The arrowheads
indicate the growth of
neovasculature into the pores
of the scaffold (scale bars:
500 pm). (D-F) Coregistered
B-scan images at the planes
indicated by dotted lines in
(A-Q), respectively, showing
the gradual inward growth of
blood vessels into the inner
pores of the scaffold. The
signals from the skin layer
were removed from all the
OCT images to clearly show
the boundaries between the
blood vessels outside and
inside the scaffold. Color
images available online at
www.liebertpub.com/tec
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Optical scattering

monitored by AR-PAM at 1, 2, 4, and 6 weeks post-
implantation (Fig. 5 and Supplementary Movie S5). As
shown in the images where the signals from skin layer had
been removed from the 3D PAM data, the neovasculature
essentially did not efficiently regenerate into the scaffold
region until week 4 (Fig. 5E-G). Even by week 6 (Fig. 5H),
there were significantly fewer blood vessels inside the scaf-
fold, and they took up much smaller areas than those inside
the scaffold with a pore size of 200 pm (Fig. 4H). The corre-
sponding B-scan images also show much fewer blood vessels
inside the scaffold (Fig. 5I-L).

Histology and correlation with quantitative PAM

A group of mice with implanted PLGA inverse opal
scaffolds (200 and 80 um in pore size) were sacrificed and
subjected to histology analyses at the same time points as the
PAM imaging. Figure 6A—C shows typical hematoxylin and
eosin (H&E)-stained sections from the center (500-1000-pm
below the surface) of the scaffolds with a pore size of 200 um
at 2, 4, and 6 weeks postimplantation, respectively. A few
blood vessels (indicated by arrowheads) with small diame-
ters could be observed starting at week 2 (Fig. 6A), and they
grew both in number and area over time (Fig. 6B, C). By
contrast, for scaffolds with a pore size of 80 pm, only a small
number of blood vessels with small total areas could be
observed even at week 6 (Fig. 6E-G). These observations
were qualitatively consistent with the PAM images (Figs. 4
and 5).

Figure 7A and B show quantifications of normalized ves-
sel area as a function of time calculated from both histology
and PAM data for the scaffolds with pore sizes of 200 um
(Fig. 7A) and 80 pm (Fig. 7B), respectively. The area of blood
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FIG. 4. Chronic AR-PAM images revealing the development of neovasculature in an inverse opal scaffold with a pore size
of 200 pm. (A-D) MAP images without removing the signals from the skin layer on top of the scaffold at 1, 2, 4, and 6 weeks
postimplantation, respectively. (E-H) Corresponding MAP images after removal of the signals from the skin layer on top of
the scaffold. (I-L) The corresponding B-scan images at are planes marked by the green dashed lines in (A-D), respectively.
The dotted square indicates the area where the scaffold resided. AR-PAM, acoustic-resolution PAM. Color images available
online at www liebertpub.com/tec
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FIG.5. Chronic AR-PAM images showing the development of neovasculature in an inverse opal scaffold with a pore size of
80 pm. (A-D) MAP images without removing the signals from the skin layer on top of the scaffold at 1, 2, 4, and 6 weeks
postimplantation, respectively. (E-H) The corresponding MAP images after removing the signals from the skin layer on top
of the scaffold. (I-L) The corresponding B-scan images at planes are marked by the green dashed lines in (A-D), respectively.
The dotted square indicates the region where the scaffold resided. Color images available online at www .liebertpub.com/tec
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FIG. 6. Histology images showing the development of
neovasculature in inverse opal scaffolds. Hematoxylin and
eosin-stained sections of the explanted scaffolds with a pore
size of (A-D) 200 um and (E-H) 80 pm postimplantation at
(A, E) 2 weeks, (B, F) 4 weeks, and (C, D, G, H) 6 weeks.
Sections in (A-C, E-G) were obtained from the central region
(500-1000 um below surface) of the scaffolds, while sections
in (D, H) were obtained from a plane close to the surface (0-
200 pm). Arrowheads denote blood vessels. Color images
available online at www .liebertpub.com/tec

vessels at each time point was normalized against that of the
scaffolds with a pore size of 80 um at week 2. The PAM
results show that the normalized vessel areas for the scaf-
folds with a pore size of 200 um were 2.0-3.5 times larger
than those of the scaffolds with a pore size of 80 pm over a
period of 6 weeks, which correlated well with the histology
analyses. We further examined the development of neo-
vasculature close to the surface (0-200 um) of the scaffold
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FIG. 7. Comparison of histology analyses and PAM quan-
tification. (A, B) Normalized vessel area calculated from both
PAM data and histology for scaffolds with a pore size of (A)
200 pm and (B) 80 um. (C) A comparison of the blood vessel
area in the scaffolds at planes close to the surface and in the
central region of the scaffolds 6 weeks postimplantation. S,
surface; C, center; His, histology. All the results were pre-
sented as meanz+standard error (n=3). Color images avail-
able online at www liebertpub.com/tec
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from the PAM data (Fig. 6D, H). In both type of scaffolds,
there were vessels with large areas, and the vessel areas were
estimated to be ~1.9 times and ~ 3.7 times larger than those
in the central region of the scaffolds with pore sizes of 200
and 80 pm, respectively (Fig. 7C). Similar results could also
be quantified by analyzing the histology data (Fig. 7A-C).

Discussion

The PLGA inverse opal scaffolds were fabricated by
templating against cubic close-packed lattices of gelatin mi-
crospheres.>!>1%22 As two unique features, the inverse opal
scaffolds have a uniform pore size and an interconnected
porous structure, which are critical to improvement of ho-
mogeneity in cell seeding throughout the entire scaffold.?**
As such, these scaffolds could reduce the density of defect
sites that may exist in scaffolds with nonuniform pores and
structures.’’. When implanted in vivo, these inverse opal
scaffolds could also potentially induce faster and more uni-
form tissue/blood vessel infiltration and thus formation of a
better interface between the scaffold and the surrounding
tissue. Therefore, this new class of 3D porous scaffolds is
well suited for tissue-engineering applications, which usu-
ally require neovascularization during the process of regen-
eration.***>

So far, it has been difficult to temporally monitor the de-
velopment of neovasculatures in 3D scaffolds with a rela-
tively high spatial resolution and deep penetration in a
noninvasive, label-free manner. Traditionally, the inward
growth of blood vessels into a tissue-engineering construct is
examined by either destructive methods that require the
excision of the implants for histology analyses, or methods
that require the use of contrast agents (e.g., micro-CT and
LSMs). By contrast, PAM is a better imaging modality for
chronically monitoring the growth of blood vessels in vivo,
since it does not require any exogenous contrast agents, as its
contrast mechanism is based upon the optical absorption of
hemoglobin, an intrinsic component of red blood cells
(RBCs).2%”

On the other hand, multimodality imaging has become
increasingly important, as it can offer details of the hierar-
chical structures of a sample. In this work, we have intro-
duced a dual-modality system combining OR-PAM and
OCT, where OR-PAM could effectively monitor the devel-
opment of blood vessels by taking advantage of the strong
absorption of hemoglobin (Fig. 2A-C and Supplementary
Movie S1), whereas OCT could give information about the
structure of an implanted scaffold due to its optical scattering
contrast (Fig. 2D-F and Supplementary Movie S2), both
noninvasively. By coregistering the data obtained from each
modality, the positions of the vessels relative to the scaffold
were revealed (Fig. 3 and Supplementary Movie S3), clearly
showing the gradual invasion of blood vessels into the in-
terior of the scaffold.

Interestingly, while several layers of the pores of the
scaffold could be observed under the skin layer at weeks 2
and 4 in OCT images (Fig. 3D, E), the porous structures
could no longer be clearly observed at week 6 (Fig. 3F),
probably due to (1) inward growth of the surrounding tis-
sues that could blur the scattering signals from the scaffold
due to their similar refractive indices™ and (2) slight degra-
dation of the scaffold that rendered its structure undetectable
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by OCT as a result of compromised material and structural
properties.

For the OR-PAM subsystem, it was difficult to image
deeply into the scaffold due to strong optical scattering.
Therefore, we also used an AR-PAM system with a lateral
resolution of 45pum (as defined by ultrasonic focusing) for
imaging studies. In this case, the invasion of vasculature
from the surroundings into the implanted scaffold could be
readily observed by AR-PAM (Fig. 4 and Supplementary
Movie S4). Comparing images obtained using these two
PAM modalities (Figs. 2-4 and Supplementary Movies S2
and S4), it can be concluded that OR-PAM was capable of
achieving a better lateral resolution (5pm) than AR-PAM,
while AR-PAM allowed for a greater penetration depth of
more than 3mm, making it better suited for imaging the
whole thickness of the scaffold (1.2-1.5mm) plus that of the
mouse ear (~0.5mm). The AR-PAM system could still pro-
vide adequate resolution at such a penetration depth, be-
cause the resolution was determined by the ultrasonic
parameters, and ultrasound scattering is much weaker than
optical scattering in biological tissues and scaffolds. It should
be emphasized that PAM is capable of imaging on multiple
length scales, covering structures spanning from organelles
to orgams.29 In fact, photoacoustic tomography can even
image objects in biological tissues as deep as ~5.2cm at the
expense of resolution,””*" which may be sufficient to fit the
ultimate goal of engineering tissues over large volumes.

The imaging modality could also be used to evaluate the
angiogenic effect of a scaffold by resolving the growth pat-
terns of neovascularization in different scaffolds. To this end,
we did a new set of experiments with scaffolds with pores of
80 um in size. As shown by the PAM images (Fig. 5 and
Supplementary Movie S5), there was a much lower degree of
vascularization in these scaffolds as compared to those with
a pore size of 200 um (Fig. 4 and Supplementary Movie S4).
For scaffolds with a pore size of 80 um, most of the neo-
vessels could only grow into the pores close to the surface,
but not deeply into the scaffold (Figs. 6E-H and 7C). The
reason for this type of growth is that the small windows (15—
20pm in size) connecting adjacent pores might limit the
penetration of vessels into the pores deeply inside the scaf-
fold. By contrast, scaffolds with a pore size of 200 pm were
able to allow more neovessels to infiltrate into the pores close
to the surface as well as to penetrate deeply into the central
region through the relatively large windows (40-50 um),
eventually leading to the formation of a network of large,
interconnected blood vessels (Figs. 6A-D and 7C).

Another significant feature of PAM is its capability to
quantify the signals, that is, PAM allows us not only to vi-
sualize the temporal growth of the vasculature but also to
quantify the increase in the blood vessel volume inside the
scaffold. By comparing the data from PAM with those from
traditional histological analyses, we found that they agreed
well with each other (Fig. 7A—C), indicating good accuracy of
quantification by PAM. It should be pointed out that, for
histology analyses, we calculated the blood vessel areas us-
ing the data from H&E-stained tissue/scaffold sections.
Blood vessels were identified from the presence of RBCs
surrounded with a continuous layer of (vascular) cells.*
Although such a method cannot distinguish different types
of vessels by specific markers as with immunostaining (e.g.,
CD31 and von Willebrand factor for endothelial cells in
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capillaries”’34 and a-smooth muscle actin for smooth muscle
cells in arteries™), the results could be directly compared
with those obtained by PAM. The reason is that PAM detects
hemoglobin in RBCs in all types of blood vessels, including
those newly formed (with RBCs, but without blood flow),
and therefore the blood vessel areas calculated from PAM
volumetric data were essentially the areas of RBCs, which
should match better with those derived from histology im-
ages with simply H&E staining.

Furthermore, other important parameters of the neo-
vasculature inside a scaffold, such as flow velocity and ox-
ygen saturation,®*® can be derived by functional PAM.

Conclusions

We have demonstrated that PAM could be a powerful tool
for chronically monitoring neovascularization in an inverse
opal scaffold in vivo in a noninvasive manner. By combining
with OCT, we also demonstrated the capability to simulta-
neously image and analyze the vasculature and scaffold. The
whole scaffold/tissue (~2mm in thickness) could be well
imaged and resolved in a 3D fashion. The hybrid system
containing OR-PAM and OCT offered a fine lateral resolu-
tion of ~5um and a penetration depth of ~1mm into the
scaffold/tissue construct. AR-PAM further extended the
penetration depth up to ~3mm at a lateral resolution of
~45pm. By quantifying the 3D PAM data, we further ex-
amined the effect of pore size (200 vs. 80 um) of a scaffold on
neovascularization. The PAM results show that the normal-
ized vessel areas for the scaffolds with a pore size of 200 um
were 2.0-3.5 times larger than those of the scaffolds with a
pore size of 80 um over a period of 6 weeks, which correlated
well with traditional invasive, labor-intensive histology an-
alyses. Our results suggest that PAM will become a useful
imaging modality for tissue-engineering applications, espe-
cially when thick scaffold/tissue constructs are involved.
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